U.G. 5th Semester Examination - 2020 MATHEMATICS

Course Code: BMTMGERT10

Course Title: Basic of Higher Mathematics-I

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - a) If α , β , γ , δ be the roots of biquadratic equation $x^4 + qx + r = 0$, find $\sum \alpha \beta$.
 - b) Under which conditions the equation $ax^3 + bx^2 + cx + d = 0$ is a reciprocal equation of first kind?
 - c) Find the remainder when $x^6 + x^3 + 1$ is divided by (x+1).
 - d) If z=1+i, find amp z.
 - e) Find the modulus of the complex number $1+\sin\alpha+i\cos\alpha$.
 - f) What is the number of solutions of the non-homogeneous system of linear equations x+y-z=2 and 2x+2y-2z=8?

- g) Express the complex number z = -i in polar form.
- h) What are the Eigen values of the diagonal matrix $D = diag(d_1, d_2, d_3)$?
- i) Write down the *n*-th derivative of the function log(a+x) with respect to x.
- j) Give an example of a homogeneous function in x, y of degree zero.
- k) If $u = \tan^{-1} \left(\frac{y}{x} \right)$, find $\frac{\partial u}{\partial y}$.
- 1) Define the rank of a matrix $A = (a_{ij})_{n \times n}$.
- m) Define divergence of a vector point function.
- n) If $\varphi(x, y, z) = x^2 + y^2 + z^2$, find ∇f .
- o) When a vector field is called solenoidal?
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) Find the product of all values of $(1+i)^{\frac{2}{3}}$.
 - b) Express $\frac{(\cos\theta + i\sin\theta)^4}{(\sin\theta + i\cos\theta)^3}$ in the form (A + iB).
 - c) Find the roots of the characteristic equation of the matrix $\begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix}$.
 - d) Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & -4 \\ 0 & 4 & 5 \end{pmatrix}.$

- e) Verify Euler's Theorem for the homogeneous function $u = x^2 5xy$.
- f) Evaluate the eigenvalues of the matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}.$
- g) If $a = (t^2, t, -t^3)$, $b = (\sin t, -2\cos t, 0)$, find $\frac{d}{dt}(a.b)$.
- h) If $r = x^3i + 3yz^2j zk$, find $(\nabla \cdot r)$ at the origin.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) i) If α , β , γ be the roots of the cubic equation $x^3 + qx r = 0$, find the cubic equation whose roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$.
 - ii) Solve the binomial equation $x^5 1 = 0$. 3+2
 - b) i) Express the matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ as the sum of a symmetric matrix and a skew
 - ii) If A and B be two orthogonal matrices of the same order, prove that AB is also an orthogonal matrix of the same order.

3+2

- c) i) If r be the distance of P(x, y, z) from the origin and r be the position vector of P relative to the origin, show that $curl\ r = 0$.
 - ii) State Generalized Mean Value Theorem. 3+2
- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Solve the cubic equation $x^3 + 3x = 0$ by Cardano's Method.
 - ii) Find the values of $(1-i)^{\frac{1}{4}}$. 5+5
 - b) i) Solve the following system of linear equations by Cramer's Rule:

$$2x - y = 3$$
, $3y - 2z = 5$, $x + y + z = 1$

- Find the Eigen values and Eigen vectors of the matrix $\begin{pmatrix} 2 & 1 \\ 5 & -3 \end{pmatrix}$. 4+(2+4)
- c) i) If $y = \tan^{-1} x$, show that $(1+x^2)y_{n+1} + 2nx y_n + n(n-1)y_{n-1} = 0.$ Also find the value of $(y_n)_0$.
 - ii) If $r = (\cos nt)i + (\sin nt)j$; *n* being a parameter, then show that $r \times \frac{dr}{dt} = nk$. (4+2)+4

symmetric matrix.